855 research outputs found

    Modified Fuzzy ARTMAP Approaches Bayes Optimal Classification Rtaes: An Empirical Demonstration

    Get PDF
    This report examines the feasability of the fuzzt ARTMAP neural network for classifying statistical data and analyses the results according to the Bayes decision criterion. A binary decision with a single observation classification problem is chosen to demonstrate and assess the performance of fuzzy ARTMAP. In this task, fuzzy ARTMAP is used to categorise two classes of Gaussian-distributed continuous-valued random variables autonomously and on-line. Various configurations of the task have been investigated by varying the source (mean) separation, prior probabilities and variances of the two Gaussian sources. The results illustrate the limitations of fuzzy ARTMAP in this content. This in turn leads to a modificatin to the algorithm of fuzzy ARTMAP. Together with a proposed category selection scheme, fuzzy ARTMAP is better able to approach the Bayes optimal classification rates for a binary decision domain

    Fatty acid metabolism of Mycobacterium tuberculosis: a double-edged sword

    Get PDF
    Mycobacterium tuberculosis can cocatabolize a range of carbon sources. Fatty acids are among the carbons available inside the host’s macrophages. Here, we investigated the metabolic changes of the fatty acid-induced dormancy-like state of M. tuberculosis and its involvement in the acquisition of drug tolerance. We conducted metabolomics profiling using a phosphoenolpyruvate carboxykinase (PEPCK)-deficient M. tuberculosis strain in an acetate-induced dormancy-like state, highlighting an overaccumulation of methylcitrate cycle (MCC) intermediates that correlates with enhanced drug tolerance against isoniazid and bedaquiline. Further metabolomics analyses of two M. tuberculosis mutants, an ICL knockdown (KD) strain and PrpD knockout (KO) strain, each lacking an MCC enzyme—isocitrate lyase (ICL) and 2-methylcitrate dehydratase (PrpD), respectively—were conducted after treatment with antibiotics. The ICL KD strain, which lacks the last enzyme of the MCC, showed an overaccumulation of MCC intermediates and a high level of drug tolerance. The PrpD KO strain, however, failed to accumulate MCC intermediates as it lacks the second step of the MCC and showed only a minor level of drug tolerance compared to the ICL KD mutant and its parental strain (CDC1551). Notably, addition of authentic 2-methylisocitrate, an MCC intermediate, improved the M. tuberculosis drug tolerance against antibiotics even in glycerol medium. Furthermore, wild-type M. tuberculosis displayed levels of drug tolerance when cultured in acetate medium significantly greater than those in glycerol medium. Taken together, the fatty acid-induced dormancy-like state remodels the central carbon metabolism of M. tuberculosis that is functionally relevant to acquisition of M. tuberculosis drug tolerance

    Addendum to "Superimposed Oscillations in the WMAP Data?"

    Full text link
    We elaborate further on the possibility that the inflationary primordial power spectrum contains superimposed oscillations. We study various effects which could influence the calculation of the multipole moments in this case. We also present the theoretical predictions for two other cosmological observables, the matter power spectrum and the EE polarization channel.Comment: 4 pages, 3 figures, uses RevTex4, matches published versio

    Premelting of Thin Wires

    Full text link
    Recent work has raised considerable interest on the nature of thin metallic wires. We have investigated the melting behavior of thin cylindrical Pb wires with the axis along a (110) direction, using molecular dynamics and a well-tested many-body potential. We find that---in analogy with cluster melting---the melting temperature Tm(R)T_m (R) of a wire with radius RR is lower than that of a bulk solid, TmbT_m^b, by Tm(R)=Tmbc/RT_m (R) = T_m^b -c/R. Surface melting effects, with formation of a thin skin of highly diffusive atoms at the wire surface, is observed. The diffusivity is lower where the wire surface has a flat, local (111) orientation, and higher at (110) and (100) rounded areas. The possible relevance to recent results on non-rupturing thin necks between an STM tip and a warm surface is addressed.Comment: 10 pages, 4 postscript figures are appended, RevTeX, SISSA Ref. 131/94/CM/S

    Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations

    Get PDF
    This article, we explore the asymptotic stability and asymptotic synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous neuron activation functions (FCGNNDDs). First, under the framework of Filippov theory and differ- ential inclusion theoretical analysis, the global existence of Filippov solution for FCGNNDDs is studied by means of the given growth condition. Second, by virtue of suitable Lyapunov functional, Young inequality and comparison theorem for fractional order delayed linear system, some global asymptotic stability conditions for such system is derived by limiting discontinuous neuron activations. Third, the global asymptotic synchronization condition for FCGNNDDs is obtained based on the pinning control. At last, two numerical simula- tions are given to verify the theoretical findings.N/

    Unified selective sorting approach to analyse multi-electrode extracellular data

    Get PDF
    Extracellular data analysis has become a quintessential method for understanding the neurophysiological responses to stimuli. This demands stringent techniques owing to the complicated nature of the recording environment. In this paper, we highlight the challenges in extracellular multi-electrode recording and data analysis as well as the limitations pertaining to some of the currently employed methodologies. To address some of the challenges, we present a unified algorithm in the form of selective sorting. Selective sorting is modelled around hypothesized generative model, which addresses the natural phenomena of spikes triggered by an intricate neuronal population. The algorithm incorporates Cepstrum of Bispectrum, ad hoc clustering algorithms, wavelet transforms, least square and correlation concepts which strategically tailors a sequence to characterize and form distinctive clusters. Additionally, we demonstrate the influence of noise modelled wavelets to sort overlapping spikes. The algorithm is evaluated using both raw and synthesized data sets with different levels of complexity and the performances are tabulated for comparison using widely accepted qualitative and quantitative indicators

    Neutrino Propagation Through Helioseismic Waves

    Full text link
    Motivated by earlier calculations showing large effects when neutrinos propagate through fluctuating media, we perform here a detailed analysis of how density fluctuations in the sun in the form of helioseismic waves can modify the MSW solution to the solar neutrino problem. We find negligible effects for the MSW spectrum, even under extreme circumstances. There are two main reasons why our conclusions differ from earlier analyses. First, most helioseismic waves do not affect neutrino propagation because their amplitude is too small in the MSW resonance region, which is the only region to whose fluctuations neutrinos are sensitive. There is one class of waves which may be subject to an instability, however, and so can have significantly larger amplitudes. But the wavelength for these waves is so long that it invalidates the previous methods of calculation. Our more complete calculation significantly reduces the prediction for their influence on neutrino propagation.Comment: 27 pages, plain TeX, 10 figure

    Finite temperature Casimir effect in piston geometry and its classical limit

    Full text link
    We consider the Casimir force acting on a dd-dimensional rectangular piston due to massless scalar field with periodic, Dirichlet and Neumann boundary conditions and electromagnetic field with perfect electric conductor and perfect magnetic conductor boundary conditions. It is verified analytically that at any temperature, the Casimir force acting on the piston is always an attractive force pulling the piston towards the interior region, and the magnitude of the force gets larger as the separation aa gets smaller. Explicit exact expressions for the Casimir force for small and large plate separations and for low and high temperatures are computed. The limits of the Casimir force acting on the piston when some pairs of transversal plates are large are also derived. An interesting result regarding the influence of temperature is that in contrast to the conventional result that the leading term of the Casimir force acting on a wall of a rectangular cavity at high temperature is the Stefan--Boltzmann (or black body radiation) term which is of order Td+1T^{d+1}, it is found that the contributions of this term from the interior and exterior regions cancel with each other in the case of piston. The high temperature leading order term of the Casimir force acting on the piston is of order TT, which shows that the Casimir force has a nontrivial classical 0\hbar\to 0 limit
    corecore